Literature review on NAPL contamination and remediation
dc.contributor.author | Gallo, Claudio | |
dc.contributor.author | Paniconi, Claudio | |
dc.contributor.author | Hassanizadeh, S. M. | |
dc.date.accessioned | 2014-06-26T09:55:46Z | |
dc.date.available | 2014-06-26T09:55:46Z | |
dc.date.issued | 1998-10-23 | |
dc.description.abstract | Remediation of polluted soils and groundwater is of major concern due to the increasing number of contaminated aquifers. Subsurface aquifers constitute one of the most important sources of drinkable water. In recent years, water needs have been increasing due to increases in development and human population. Several sorts of contaminants can be found in groundwater: metal ions, pesticides, aliphatic and aromatic hydrocarbons, polycyclic hydrocarbons, chlorinated hydrocarbons, etc. The toxicity of these compounds varies and so do guidelines that establish allowable concentration levels in drinking water. Among the aforementioned types of compounds, a particular importance is assumed by those which exist as a separate phase when their concentrations in water exceed a certain limit. The transport behavior and dynamics of multiphase contaminants are very different from their dissolved counterparts, and are very difficult both to describe and to model. Several phenomena can take place, such as organic phase trapping, formation of ganglia and pools of contaminant, sorption, hysteresis in both soil imbibition and drainage, capillarity, fingering, and mass-transfer. In such cases, our ability to describe and predict the fate of a contaminant plume in which a separate organic phase occurs is limited, and research within this field is quite open. Much effort has been devoted in trying to describe the characteristics of the phenomena occuring in multiphase systems, and several models and formulations have been proposed for predicting the fate of contaminants when present in such systems (see Miller et al. 1997) for a review on multiphase modeling in porous media). Work has also been done for modeling human intervention techniques for containing and/or reducing soil contaminantion (NRC, 1994), such as pumping, clean water-air-steam injection, soil heating, surfactants, biological methods, etc. Finally, much work has also been done on the numerical solution of mathematical models whose complexity does not allow for an analytical solution. Among the dozens of remediation methods which have been proposed and which are strongly dependent on site environmental conditions, biological methods are achieving increasing importance, due to their “naturalness" and their low costs (NRC, 1993) . It has been noticed that soil microorganisms are able to degrade several classes of compounds, in particular those which partition between an aqueous and an organic phase, or sometimes also gaseous phase, for e.g., hydrocarbons, chlorinated compounds, pesticides. These compounds, or better said, their fractions dissolved in water, are liable to be metabolized by subsurface microrganisms which have the capability to degrade the compounds and to transform them into carbon dioxide and/or other compounds, which are less toxic or unnoxious. Several laboratory and field studies have been conducted for assessing and evaluating the capability and the limits of soil microorganisms to degrade several classes of contaminants (Mayer et al., 1994, 1995, 1996, 1997) . Much work has also been devoted to modeling biodegration of groundwater contaminants. The outline of this report is as follows: section 2 gives a brief description of the characteristics and properties of NAPLs, including a review of the literature with regards to formulations and modeling; section 3 discusses biodegradation of contaminants and past efforts at modeling biodegradation; section 4 surveys specific remediation technologies and experiences; and section 5 discusses open issues for further research. In the final section possible lines of research for the second phase of the PhD program are indicated. | IT |
dc.identifier.uri | http://hdl.handle.net/11050/1077 | |
dc.language.iso | en | IT |
dc.subject | groundwater model | IT |
dc.subject | polluted soils | IT |
dc.subject | contaminants | IT |
dc.subject.een-cordis | EEN CORDIS::PROTEZIONE DELL'UOMO E DELL'AMBIENTE ::Ambiente::Inquinamento delle acque / trattamento | IT |
dc.subject.een-cordis | EEN CORDIS::FISICA E SCIENZE ESATTE::Matematica, statistica::Modellazione matematica | IT |
dc.title | Literature review on NAPL contamination and remediation | IT |
dc.type | Report | IT |